Distinct enhancement of sub-bandgap photoresponse through intermediate band in high dose implanted ZnTe:O alloys
نویسندگان
چکیده
The demand for high efficiency intermediate band (IB) solar cells is driving efforts in producing high quality IB photovoltaic materials. Here, we demonstrate ZnTe:O highly mismatched alloys synthesized by high dose ion implantation and pulsed laser melting exhibiting optically active IB states and efficient sub-gap photoresponse, as well as investigate the effect of pulsed laser melting on the structural and optical recovery in detail. The structural evolution and vibrational dynamics indicates a significant structural recovery of ZnTe:O alloys by liquid phase epitaxy during pulsed laser melting process, but laser irradiation also aggravates the segregation of Te in ZnTe:O alloys. A distinct intermediate band located at 1.8 eV above valence band is optically activated as evidenced by photoluminescence, absorption and photoresponse characteristics. The carrier dynamics indicates that carriers in the IB electronic states have a relatively long lifetime, which is beneficial for the fast separation of carriers excited by photons with sub-gap energy and thus the improved overall conversion efficiency. The reproducible capability of implantation and laser annealing at selective area enable the realization of high efficient lateral junction solar cells, which can ensure extreme light trapping and efficient charge separation.
منابع مشابه
Fabrication of Wide–Range–Visible Photocatalyst Bi2WO6−x nanoplates via Surface Oxygen Vacancies
Bi2WO6 as a high visible-light-driven catalyst has been aroused broad interest. However, it can only be excitated by the light with λ < 450 nm and the solar energy utilization need to be improved. Here, the wide-range-visible photoresponse Bi2WO6-x nanoplates were fabricated by introducing surface oxygen vacancies through the controllable hydrogen reduction method. The visible photoresponse wav...
متن کاملHybrid dielectric light trapping designs for thin-film CdZnTe/Si tandem cells.
Tandem solar cells consisting of high bandgap cadmium telluride alloys atop crystalline silicon have potential for high efficiencies exceeding the Shockley-Queisser limit. However, experimental results have fallen well below this goal significantly because of non-ideal current matching and light trapping. In this work, we simulate cadmium zinc telluride (CZT) and crystalline silicon (c-Si) tand...
متن کاملBroadband high photoresponse from pure monolayer graphene photodetector.
Graphene has attracted large interest in photonic applications owing to its promising optical properties, especially its ability to absorb light over a broad wavelength range, which has lead to several studies on pure monolayer graphene-based photodetectors. However, the maximum responsivity of these photodetectors is below 10 mA W(-1), which significantly limits their potential for application...
متن کاملOptical transitions in direct bandgap Ge1-xSnx alloys
A comprehensive study of optical transitions in direct bandgap Ge0.875Sn0.125 group IV alloys via photoluminescence measurements as a function of temperature, compressive strain and excitation power is performed. The analysis of the integrated emission intensities reveals a strain-dependent indirect-to-direct bandgap transition, in good agreement with band structure calculations based on 8 band...
متن کاملUV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO Nanowires Composite for Photoresponse Enhancement in UV Photodetectors
The weak photon absorption and high recombination rate of electron-hole pairs in disordered zinc oxide nanowires (ZNWs) limit its application in UV photodetection. This limitation can be overcome by introducing graphene sheets to the ZNWs. Herein we report a high-performance photodetector based on one-dimensional (1D) wide band-gap semiconductor disordered ZNWs composited with reduced graphene ...
متن کامل